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1. Motivation

2. Decomposition of TOA radiation

LIM (Linear Inverse Model)
• Forecasts ensemble members
• Emulates MPI-ESM1.2 past2k

EnKF (Ensemble Kalman Filter)
• Combines prior and proxies
• Covariances estimated from ensemble

Posterior state

Prior state

forecast:

update:

predict:
Proxy estimate

Proxy value

Reconstruction =
Collection of posteriors

PAGES2k + CoralHydro2k proxies

PSM (Proxy System Model)
• Univariate linear regression model
• Noise statistics    from calibration residuals

3. Results: Surface temperature reconstruction
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Figure 3  Global-mean 2-m air temperature anomalies relative to 1951–1980 (20-year lowpass-fil-
tered). Over 850–1850 CE, the surface cooled by -0.21 K/kyr (NH: -0.29 K/kyr, SH: -0.12 K/kyr).

Figure 4  Seasonal correlations between our reconstruction and the instrumental GISTEMP (left, 
for SAT over 1880–2000 CE) and HadISST (right, for SST over 1870–2000 CE) datasets.
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4. Results: Multidecadal to millennial variability of TOA radiation

Figure 2  We use online data assimilation to combine information from proxies and a model. The 
reconstruction includes 2-m air temperature (SAT), sea surface temperature (SST), reflected TOA 
SW radiation (RSW), outgoing TOA LW radiation (OLR), and the upper ocean heat content.

Figure 1  The EEI and its constituent shortwave (SW) and longwave (LW) fields can be decom-
posed into two components, which we reconstruct separately. The transient effective radiative 
forcing (ERF; Forster et al., 2016) will be reconstructed using CESM2/CAM6.

E�ective radiative forcing (transient)
independent of surface temperature

• Instantaneous forcing + fast adjustments

Temperature-mediated response
covaries with surface temperature

• Feedbacks + internal variability

Atmosphere-only simulation
• Historical forcings, climatological boundary conditions
• 10 ensemble members to eliminate internal variability

Data assimilation of proxies
• Directly constrained to climate history
• Radiation �elds estimated via covariances

not included here
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5. Pseudoproxy experiment

SAT (Mean corr.: 0.48) RSW (Mean corr.: 0.06) OLR (Mean corr.: 0.19)
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Figure 7  Pseudoproxy experiment with pseudoproxies from the CESM2 CMIP6 amip-piForcing 
simulation (no ERF). Top: global means (20-year lowpass-filtered). Bottom: annual correlations.
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Figure 5  Left: Power spectra of Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscil-
lation (AMO) indices over 850–1850 CE. Right: Regression of SST and OLR onto the filtered indices 
at different passbands. The multicentennial patterns are likely due to global temperature trends.
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Figure 6  Millennial trends in zonal means over 850–1850 CE. Radiation is positive upwards. Sea-
sonal variations are likely forced by insolation changes due to axial precession (Lücke et al., 2020).

•	 Earth's energy imbalance (EEI) at the top of the atmosphere (TOA) is a key climate metric 
but has only been well-observed for the past twenty years, a period of strong greenhouse gas 
forcing. This short record limits the understanding of low-frequency energy variability.

•	 Loeb et al. (2020) demonstrated the feasibility of reconstructing TOA radiation given sea sur-
face temperatures and historical forcings, linked through clouds and surface albedo.

•	 We present preliminary results of reconstructed seasonal temperature and TOA radiation 
fields over the last millennium (850–2000 CE) using PAGES2k and CoralHydro2k proxies.
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Key findings

•	 Earth responded to the forced cooling of -0.21 K/kyr over the last millennium with albedo 
loss in the (sub)tropics, albeit offset by sea ice growth in West Antarctica. The net outgoing 
response is -0.5 (W/m²)/kyr (i.e., energy gain) and the feedback is -2.3 (W/m²)/K (Figure 6).

•	 Cooling mainly occurred at high latitudes, accompanied by strong cooling of the North Pa-
cific and Atlantic. The tropics and subtropics show no temperature trend (Figure 6).

•	 AMO and PDO have distinct OLR signatures, despite similar SST patterns in the tropical Pa-
cific. PDO-like variability is strongly linked to OLR at timescales < 200 yr while AMO-like vari-
ability has a weaker OLR signature at <20 yr than in the 20–200-yr band (Figure 5).
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