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Key findings

. Earth responded to the forced cooling of -0.21 K/kyr over the last millennium with albedo
loss in the (sub)tropics, albeit offset by sea ice growth in West Antarctica. The net outgoing
response is -0.5 (W/m?)/kyr (i.e., energy gain) and the feedback is -2.3 (W/m?)/K (Figure 6).

. Cooling mainly occurred at high latitudes, accompanied by strong cooling of the North Pa-
cific and Atlantic. The tropics and subtropics show no temperature trend (Figure 6).

- AMO and PDO have distinct OLR signatures, despite similar SST patterns in the tropical Pa-
cific. PDO-like variability is strongly linked to OLR at timescales < 200 yr while AMO-like vari-
ability has a weaker OLR signature at <20 yr than in the 20-200-yr band (Figure 5).

1. Motivation

- Earth's energy imbalance (EEI) at the top of the atmosphere (TOA) is a key climate metric
but has only been well-observed for the past twenty years, a period of strong greenhouse gas
forcing. This short record limits the understanding of low-frequency energy variability.

- Loeb et al. (2020) demonstrated the feasibility of reconstructing TOA radiation given sea sur-
face temperatures and historical forcings, linked through clouds and surface albedo.

- We present preliminary results of reconstructed seasonal temperature and TOA radiation
fields over the last millennium (850-2000 CE) using PAGES2k and CoralHydro2k proxies.

2. Decomposition of TOA radiation

EEI = ERF + R(T)
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- 10 ensemble members to eliminate internal variability

Figure 1 The EEl and its constituent shortwave (SW) and longwave (LW) fields can be decom-
posed into two components, which we reconstruct separately. The transient effective radiative
forcing (ERF; Forster et al., 2016) will be reconstructed using CESM2/CAM6.
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Figure 2 We use online data assimilation to combine information from proxies and a model. The
reconstruction includes 2-m air temperature (SAT), sea surface temperature (SST), reflected TOA
SW radiation (RSW), outgoing TOA LW radiation (OLR), and the upper ocean heat content.

3. Results: Surface temperature reconstruction
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Figure 3 Global-mean 2-m air temperature anomalies relative to 1951-1980 (20-year lowpass-fil-
tered). Over 850-1850 CE, the surface cooled by -0.21 K/kyr (NH: -0.29 K/kyr, SH: -0.12 K/kyr).
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Figure 4 Seasonal correlations between our reconstruction and the instrumental GISTEMP (left,
for SAT over 1880-2000 CE) and HadISST (right, for SST over 1870-2000 CE) datasets.

5. Pseudoproxy experiment
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Figure 7 Pseudoproxy experiment with pseudoproxies from the CESM2 CMIP6 amip-piForcing
simulation (no ERF). Top: global means (20-year lowpass-filtered). Bottom: annual correlations.
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Figure 5 Left: Power spectra of Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscil-
lation (AMO) indices over 850-1850 CE. Right: Regression of SST and OLR onto the filtered indices
at different passbands. The multicentennial patterns are likely due to global temperature trends.
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Figure 6 Millennial trends in zonal means over 850-1850 CE. Radiation is positive upwards. Sea-
sonal variations are likely forced by insolation changes due to axial precession (Llicke et al., 2020).



