A Last-Millennium Reconstruction of Top-of-Atmosphere Radiation Fields Low-Frequency Variability of Earth's Energy Budget

Dominik Stiller (dstiller@uw.edu), Gregory J. Hakim, Department of Atmospheric and Climate Science, University of Washington, Seattle, WA

Key findings

- Earth responded to the forced cooling of -0.21 K/kyr over the last millennium with albedo loss in the (sub)tropics, albeit offset by sea ice growth in West Antarctica. The **net outgoing** response is -0.5 (W/m²)/kyr (i.e., energy gain) and the feedback is -2.3 (W/m²)/K (Figure 6).
- Cooling mainly occurred at high latitudes, accompanied by strong cooling of the North Pacific and Atlantic. The tropics and subtropics show no temperature trend (Figure 6).
- AMO and PDO have distinct OLR signatures, despite similar SST patterns in the tropical Pacific. PDO-like variability is strongly linked to OLR at timescales < 200 yr while AMO-like variability has a weaker OLR signature at <20 yr than in the 20–200-yr band (Figure 5).

1. Motivation

Prior state $oldsymbol{x}_b$

forecast:

 $rac{\mathrm{d}oldsymbol{x}}{\mathrm{d}t} = \mathbf{L}oldsymbol{x} + oldsymbol{\xi}$

 $oldsymbol{x}_b = \exp(\mathbf{L}\,\Delta t)\,oldsymbol{x}_a$

LIM (Linear Inverse Model)

Forecasts ensemble members

• Emulates MPI-ESM1.2 past2k

- Earth's energy imbalance (EEI) at the top of the atmosphere (TOA) is a key climate metric but has only been well-observed for the past twenty years, a period of strong greenhouse gas forcing. This short record limits the understanding of low-frequency energy variability.
- Loeb et al. (2020) demonstrated the feasibility of reconstructing TOA radiation given sea surface temperatures and historical forcings, linked through clouds and surface albedo.
- We present preliminary results of reconstructed seasonal temperature and TOA radiation fields over the last millennium (850–2000 CE) using PAGES2k and CoralHydro2k proxies.

Figure 2 We use online data assimilation to combine information from proxies and a model. The reconstruction includes 2-m air temperature (SAT), sea surface temperature (SST), reflected TOA SW radiation (RSW), outgoing TOA LW radiation (OLR), and the upper ocean heat content.

Posterior state $oldsymbol{x}_a$

EnKF (Ensemble Kalman Filter)

 $oldsymbol{x}_a = oldsymbol{x}_b + \mathbf{K}(oldsymbol{y} - \mathbf{H}oldsymbol{x}_b)$

 $\mathbf{K} = \mathbf{B}\mathbf{H}(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^T$

• Combines prior and proxies

update:

Figure 3 Global-mean 2-m air temperature anomalies relative to 1951–1980 (20-year lowpass-filtered). Over 850–1850 CE, the surface cooled by -0.21 K/kyr (NH: -0.29 K/kyr, SH: -0.12 K/kyr).

Figure 4 Seasonal correlations between our reconstruction and the instrumental GISTEMP (left, for SAT over 1880–2000 CE) and HadISST (right, for SST over 1870–2000 CE) datasets.

Radiation fields estimated via covariances

Reconstruction = **Collection of posteriors**

simulation (no ERF). *Top*: global means (20-year lowpass-filtered). *Bottom*: annual correlations.

Acknowledgements This material is based upon work supported by the National Science Foundation under Award No. 2202526. We would like to acknowledge high-performance computing support from the Derecho system (doi:10.5065/qx9a-pg09) provided by the NSF National Center for Atmospheric Research (NCAR).

3. Results: Surface temperature reconstruction

Figure 7 Pseudoproxy experiment with pseudoproxies from the CESM2 CMIP6 amip-piForcing

4. Results: Multidecadal to millennial variability of TOA radiation 20–200 yr >200 yr PDO Reconstruction Reconstruction (95% CI) 1PI-ESM past2k simulatior 0.5 1.0 1.5 2.0 2.5 -2.5 -2.0 -1.5 -1.0 0.0 -0.5 Period (vr) 20–200 yr >200 yr <20 yr AMO Reconstruction Reconstruction (95% CI) MPI-ESM past2k simulation 200 100 50 20 10 7 5

Figure 5 Left: Power spectra of Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) indices over 850–1850 CE. *Right*: Regression of SST and OLR onto the filtered indices at different passbands. The multicentennial patterns are likely due to global temperature trends.

Figure 6 Millennial trends in zonal means over 850–1850 CE. Radiation is positive upwards. Seasonal variations are likely forced by insolation changes due to axial precession (Lücke et al., 2020).

UNIVERSITY of WASHINGTON

